International Mathematics Competition for University Students

July 31 – August 6 2017, Blagoevgrad, Bulgaria


Ivan is Watching You

Day 1
    Problem 1
    Problem 2
    Problem 3
    Problem 4
    Problem 5

Day 2
    Problem 6
    Problem 7
    Problem 8
    Problem 9
    Problem 10


    Day 1 questions
    Day 1 solutions
    Day 2 questions
    Day 2 solutions
    Closing Ceremony

Official IMC site

Problem 5

5. Let $k$ and $n$ be positive integers with $n\ge k^2-3k+4$, and let $$ f(z)=z^{n-1}+c_{n-2}z^{n-2}+\ldots+c_0 $$ be a polynomial with complex coefficients such that $$c_0c_{n-2}=c_1c_{n-3}=\ldots=c_{n-2}c_0=0.$$ Prove that $f(z)$ and $z^n-1$ have at most $n-k$ common roots.

Proposed by: Vsevolod Lev and Fedor Petrov, St. Petersburg State University

Hint: For every $n$th root of unity $\eta$, consider $$\sum_{z^n=1} z^2f(z)f(\eta z). $$